Photoinhibition of Chloroplast Reactions. II. Multiple Effects.

نویسندگان

  • L W Jones
  • B Kok
چکیده

Ultraviolet light inhibits the photoreduction of 2,6-dichlorophenolindo-phenol or nicotinamide adenine dinucleotide phosphate with water as the electron donor (evolution of oxygen) but not the photoreduction of nicotinamide adenine dinucleotide phosphate with ascorbate as the electron donor. It inhibits photophosphorylation associated with either system. Experiments undertaken to test whether plastoquinone is the site of UV inhibition yielded inconclusive results.Visible light (> 420 mmu) causes the loss of all chloroplast activities, photosystem I being more sensitive than system II. The data suggests 2 modes of action for visible light. The one sensitized by system II results in damage resembling that of UV light. The other, sensitized by system I, results in the destruction of the reaction center of this system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoinhibition of chloroplast reactions. I. Kinetics and action spectra.

A study was made of photoinhibition of spinach chloroplast reactions. The kinetics and spectral characteristics of the photoinhibition over a range between 230 and 700 mmu have been examined. The decline of activity due to preillumination was independent of wavelength, and dependent upon the number of quanta applied, not upon the rate of application. The effectiveness spectra of photoinhibition...

متن کامل

A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition.

Dark-grown Chlamydomonas reinhardtii cultures that were illuminated at low fluence rates before exposure to high-light conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were directly exposed to photoinhibitory conditions. This pretreatment has been shown to induce the expression of several nuclear heat shock protein 70 (HSP70) genes, including HS...

متن کامل

Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity

The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced...

متن کامل

GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein.

Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the pho...

متن کامل

Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.

Photoinhibition of photosystem II was studied in vivo with bean (Phaseolus vulgaris) plants grown in the presence of 0.3 (control), 4, or 15 microM Cu(2+). Although photoinhibition, measured in the presence of lincomycin to block concurrent recovery, is faster in leaves of Cu(2+)-treated plants than in control leaves, thylakoids isolated from Cu-treated plants did not show high sensitivity to p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 41 6  شماره 

صفحات  -

تاریخ انتشار 1966